

 Navigation

 	
 index

 	
 next |

 	dynamodb-mapper 1.6.2 documentation

Dynamodb-mapper’s documentation.

Overview

DynamoDB [http://aws.amazon.com/dynamodb/] is a minimalistic NoSQL engine
provided by Amazon as a part of their AWS product.

DynamoDB allows you to stores documents composed of unicode strings or numbers
as well as sets of unicode strings and numbers. Each tables must define a hash
key and may define a range key. All other fields are optional.

Dynamodb-mapper brings a tiny abstraction layer over DynamoDB to overcome some
of the limitations with no performance compromise. It is highly inspired by the
mature MoongoKit project [http://namlook.github.com/mongokit]

Documentation

User guide

	Overview of Dynamodb-mapper
	Requirements

	Features

	Logging

	Known limitations

	Getting started with Dynamodb-mapper
	Setup Dynamodb-mapper
	Installation

	Set you Amazon’s API credential in ~/.boto

	Example data: DoomMap
	DoomMap Model

	Initial Table creation

	Example Usage

	Data models
	Bare minimal model

	About keys

	Creating the table

	Advanced usage
	Namespacing the models

	Using auto-incrementing index

	Use case: Bugtracking System

	Using a range_key

	Default values

	Related exceptions
	SchemaError

	ThroughputError

	Accessing data
	Strong vs eventual consistency

	Querying
	Use case: Get user Chuck Norris

	Use case: Get only objects after 2012-12-21 13:37

	Use case: Query the most up to date revision of a blogpost

	Data manipulation
	Saving
	Use case: Virtual coins

	Autoincrement technical background

	About editing hash_key and/or range_key values

	Logically group data manipulations

	Limitations

	Related exceptions
	OverwriteError

	ExpectedValueError

	Transactions
	Transaction concepts

	Using the transaction engine
	Use case: Bundle purchase

	Use case: PowerUp purchase

	Related exceptions
	MaxRetriesExceededError

	TargetNotFoundError

	Change log - Migration guide.
	DynamoDBMapper 1.6.2
	Additions

	Upgrade

	Known bugs - limitations

	DynamoDBMapper 1.6.1
	Changes

	DynamoDBMapper 1.6.0
	Additions

	Changes

	Removal

	Upgrade

	Known bugs

Api reference

	Connection class
	Class definition

	Model class
	Class definition

	Auto-increment

	Transactions class
	Class definition

Indices and tables

	Index

	Module Index

	Search Page

Contribute

Want to contribute, report a but of request a feature ? The development goes on
at Ludia’s BitBucket account:

	Report bugs: https://bitbucket.org/Ludia/dynamodb-mapper/issues

	Fork the code: https://bitbucket.org/Ludia/dynamodb-mapper/overview

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Overview of Dynamodb-mapper

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Overview of Dynamodb-mapper

DynamoDB [http://aws.amazon.com/dynamodb/] is a minimalistic NoSQL engine
provided by Amazon as a part of their AWS product.

DynamoDB allows you to stores documents composed of unicode strings or numbers
as well as sets of unicode strings and numbers. Each tables must define a hash
key and may define a range key. All other fields are optional.

Dynamodb-mapper brings a tiny abstraction layer over DynamoDB to overcome some
of the limitations with no performance compromise. It is highly inspired by the
mature MoongoKit project [http://namlook.github.com/mongokit]

Requirements

The documentation currently assumes that you’re running Boto 2.3.0 or later.
If you’re not, then the API for query and scan changes. You will have to supply
raw condition dicts, as is done in boto itself.

Also note that Boto 2.3.1 or later is required for autoincrement_int hash keys.
Earlier versions will fail.

Features

	Python <–> DynamoDB type mapping

	dict and lists serialization

	default values

	Multi-target transaction support with auto-retry (new in 1.6.0)

	Auto-inc hash_key

	Protection against the ‘lost update’ syndrom

	New table creation

	Framework agnostic

	Log all successful database access

Logging

Dynamodb-mapper uses 3 “logging” loggers:

	model

	model.database-access

	transactions

Known limitations

	Dates nested in a dict or set can not be saved as datetime does not support JSON serialization. (issue #7)

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Getting started with Dynamodb-mapper

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Getting started with Dynamodb-mapper

Setup Dynamodb-mapper

Installation

$ pip install dynamodb-mapper

Set you Amazon’s API credential in ~/.boto

[Credentials]
aws_access_key_id = <your access key>
aws_secret_access_key = <your secret key>

For advance configuration, please see the official Boto documentation [http://docs.pythonboto.org/en/latest/boto_config_tut.html].

Example data: DoomMap

We want a DoomMap to be part of an episode. In our schema, the episodes
are identified by an integer ID, this is the hash_key. We also want our
episodes to have multiple maps also identified by an integer. This map id is
the range_key. range_key allows to logically group items that belongs to
a same group.

Our maps also have an name and a set of cheats codes. In DynamoDB, all strings
are stored as unicode hence the type. Lastly, we want each maps to recognize
by __defaults__ the famous “Konami” cheat code.

DoomMap Model

Start by defining the document structure.

from dynamodb_mapper.model import DynamoDBModel

class DoomMap(DynamoDBModel):
 __table__ = u"doom_map"
 __hash_key__ = u"episode"
 __range_key__ = u"map"
 __schema__ = {
 u"episode": int,
 u"map": int,
 u"name": unicode,
 u"cheats": set,
 }
 __defaults__ = {
 u"cheats": set([u"Konami"]),
 }

All class attributes of the form __attr__ are used to configure the mapper.
Note that they are defined on the class level. Any accidental override in the
instances will be ignored.

	__table__ Table name in DynamoDB

	__hash_key__ Name of the the hash key field

	__range_key__ Name of the (optional) range key field

	
	__schema__ Dict mapping of {"field_name": type}. Must at least contain

	the keys

	__defaults__ Define an optional default value for each field used by __init__

For more informations on the models and defaults, please see the data models section of this manual.

Initial Table creation

Unlike MongoDB, table creation must be done explicitly. At the moment
create_table(), is the only case where
you’d want to directly use the ConnectionBorg class.

conn = ConnectionBorg()
conn.create_table(DoomMap, 10, 10, wait_for_active=True)

When creating a table with, you must specify the model class and the desired R/W
throughput that is to say the peek number of request per seconds you expect
for you application. For more information, please see Amazon’s official
documentation [http://aws.amazon.com/dynamodb/faqs/#What_is_provisioned_throughput].

Default behavior is to create the tables asynchronously but you may explicitly
ask for synchronous creation with wait_for_active=True. Please note that only
10 tables may be in CREATING simultaneously.

Example Usage

First, create and save() new map in episode 1 and call
it “Hangar”. Let’s also register a couple a cheats.

e1m1 = DoomMap()
e1m1.episode = 1
e1m1.map = 1
e1m1.name = u"Hangar"
e1m1.cheats = set([u"idkfa", u"iddqd", u"idclip"])
e1m1.save()

It is now possible to get() it from the database using
a conpound index that is to say, both a hash_key and a range_key. By
default, get uses “eventual consistence” for data access but it is possible
to ask for strongly consistent data using consistent_read=True.

Later on, retrieve that same object from the DB...
e1m1 = DoomMap.get(1, 1)

What if I want to get all the maps in a given episode? This is the purpose of the
query() methode which also allows to filter the results
based on the range_key value.

query all maps of episode 1
e1_maps = DoomMap.query(hash_key=1)

query all maps of episode 1 with 'map' hash_key > 5
from boto.dynamodb.condition import GT
e1_maps_after_5 = DoomMap.query(
 hash_key=1,
 range_key_condition=GT(5))

Dynamodb-mapper offers much more usage tools like scan()
and delete(), Transaction support...

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Data models

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Data models

Models are formal Pythons objects telling the mapper how to map DynamoDB data
to regular Python and vice versa.

Bare minimal model

A bare minimal model with only a hash_key needs only to define a __table__
and a hash_key.

from dynamodb_mapper.model import DynamoDBModel

class MyModel(DynamoDBModel):
 __table__ = u"..."
 __hash_key__ = u"key"
 __schema__ = {
 u"key": int,
 #...
 }

The model can then be instanciated and used like any other Python class.

>>> data = MyModel()
>>> data.key = u"foo/bar"

About keys

While this is not stricly speaking related the mapper itself, it seems important
to clarify this point as this is a key feature of Amazon’s DynamoDB.

Amazon’s DynamoDB has support for 1 or 2 keys per objects. They must be specified
at table creation time and can not be altered. Neither renamed nor added or removed.
It is not even possible to change their values whithout deleting and re-inserting
the object in the table.

The first key is mandatory. It is called the hash_key. The hash_key is
to access data and controls its replications among database partitions. To take
advantage of all the provisioned R/W throughput, keys should be as random as
possible. For more informations about hash_key, please see Amazon’s
developer guide [http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/BestPractices.html#UniformWorkloadBestPractices]

The second key is optional. It is called the range_key. The range_key is
used to logically group data with a given hash_key. More informations
below.

Data access relying either on the hash_key or both the hash_key and
the range_key is fast and cheap. All other options are very expensive.

We intend to add migration tools to Dynamodb-mapper in a later revision but do not
expect miracles in this area.

This is why correctly modeling your data is crucial with DynamoDB.

Creating the table

Unlike other NoSQL engines like MongoDB, tables must be created and managed
explicitely. At the moment, dynamodb-mapper abstracts only the initial table
creation. Other lifecycle managment operations may be done directly via Boto.

To create the table, use create_table() with the model
class as first argument. When calling this method, you must specify how much
throughput you want to provision for this table. Throughput is mesured as the
number of atomic KB requested or sent per second. For more information, please
see Amazon’s official documentation [http://aws.amazon.com/dynamodb/faqs/#What_is_provisioned_throughput].

from dynamodb_mapper.model import DynamoDBModel, ConnectionBorg

conn = ConnectionBorg()
conn.create_table(MyModel, read_units=10, write_units=10, wait_for_active=True)

Important note: Unlike most databases, table creation may take up to 1 minute.
during this time, the table is not usable. Also, you can not have more than 10
tables in CREATING or DELETING state any given time for your whole Amazon
account. This is an Amazon’s DynamoDB limitation.

The connection manager automatically reads your credentials from either:

	/etc/boto.cfg

	~/.boto

	or AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables

If none of these places defines them or if you want to overload them, please use
set_credentials() before calling create_table.

For more informations on the connection manager, pease see ConnectionBorg

Advanced usage

Namespacing the models

This is more an advice, than a feature. In DynamoDB, each customer is allocated
a single database. It is highly recommended to namespace your tables with a name
of the form <application>-<env>-<model>.

Using auto-incrementing index

For those comming from SQL-like world or even MongoDB with its UUIDs, adding an
ID field or using the default one has become automatic but these environement
are not limited to 2 indexes. Moreover, DynamoDB has no built-in support for it.
Nonetheless, Dynamodb-mapper implements this feature at a higher level while.
For more technical background on the internal implementation.

If the field value is left to its default value of 0, a new hash_key will
automatically be generated when saving. Otherwise, the item is inserted at the
specified hash_key.

Before using this feature, make sure you really need it. In most cases another
field can be used in place. A good hint is “which field would I have marked
UNIQUE in SQL ?”.

	for users, email or login field shoud do it.

	for blogposts, permalink could to it too.

	for orders, datetime is a good choice.

In some applications, you need a combination of 2 fields to be unique. You may
then consider using one as the hash_key and the other as the range_key
or, if the range_key is needed for another purpose, combine try combining them.

At Ludia, this is a feature we do not use anymore in our games at the time of
writing.

So, when to use it ? Some applications still need a ticket like approach and dates
could be confusing for the end user. The best example for this is a bugtracking
system.

Use case: Bugtracking System

from dynamodb_mapper.model import DynamoDBModel, autoincrement_int

class Ticket(DynamoDBModel):
 __table__ = u"bugtracker-dev-ticket"
 __hash_key__ = u"ticket_number"
 __schema__ = {
 u"ticket_number": autoincrement_int,
 u"title": unicode,
 u"description": unicode,
 u"tags": set, # target, version, priority, ..., order does not matter
 u"comments": list, # probably not the best because of the 64KB limitation...
 #...
 }

Create a new ticket and auto-generate an ID
ticket = Ticket()
ticket.title = u"Chuck Norris is the reason why Waldo hides"
ticket.tags = set([u'priority:critical', u'version:yesterday'])
ticket.description = u"Ludia needs to create a new social game to help people all around the world find him again. Where is Waldo?"
ticket.comments.append(u"...")
ticket.save()
print ticket.ticket_number # A new id has been generated

Create a new ticket and force the ID
ticket = Ticket()
ticket.ticket_number = 42
ticket.payload = u"foo/bar"
ticket.save() # create or replace item #42
print ticket.ticket_number # id has not changed

To prevent accidental data overwrite when saving to an arbitrary location, please
see the detailed presentation of Saving.

Please note that hash_key=-1 is currently reserved and nothing can be stored
at this index.

You can not use autoincrement_int and a range_key at the same time. In the
bug tracker example above, it also means that tickets number are distributed on
the application scope, not on a per project scope.

This feature is only part of Dynamodb-mapper. When using another mapper or
direct data access, you might corrupt the counter. Please see the reference
documentation for implementation details and
technical limitations.

Using a range_key

Models may define a second key index called range_key. While hash_key only
allows dict like access, range_key allows to group multiple items under a single
hash_key and to further filter them.

For example, let’s say you have a customer and want to track all it’s orders. The
naive/SQL-like implementation would be:

from dynamodb_mapper.model import DynamoDBModel, autoincrement_int

class Customer(DynamoDBModel):
 __table__ = u"myapp-dev-customers"
 __hash_key__ = u"login"
 __schema__ = {
 u"login": unicode,
 u"order_ids": set,
 #...
 }

class Order(DynamoDBModel):
 __table__ = u"myapp-dev-orders"
 __hash_key__ = u"order_id"
 __schema__ = {
 u"order_id": autoincrement_int,
 #...
 }

Get all orders for customer "John Doe"
customer = Customer(u"John Doe")
order_generator = Order.get_batch(customer.order_ids)

But this approach has many drawbacks.

	
	It is expensive:

	
	An update to generate a new autoinc ID

	An insertion for the new order item

	An update to add the new order id to the customer

	
	It is risky:

	
	Items are limited to 64KB but the order_ids set has no growth limit

	
	To get all orders from a giver customer, you need to read the customer first

	and use a get_batch() request

As a first enhancement and to spare a request, you can use datetime instead of
autoincrement_int for the key order_id but with the power of range keys,
you could to get all orders in a single request:

from dynamodb_mapper.model import DynamoDBModel
from datetime import datetime

class Customer(DynamoDBModel):
 __table__ = u"myapp-dev-customers"
 __hash_key__ = u"login"
 __schema__ = {
 u"login": unicode,
 #u"orders": set, => This field is not needed anymore
 #...
 }

class Order(DynamoDBModel):
 __table__ = u"myapp-dev-orders"
 __hash_key__ = u"login"
 __range_key__ = u"order_id"
 __schema__ = {
 u"order_id": datetime,
 #...
 }

Get all orders for customer "John Doe"
Order.query(u"John Doe")

Not only is this approach better, it is also much more powerful. We could
easily limit the result count, sort them in reverse order or filter them by
creation date if needed. For more background on the querying system, please see
the accessing data section of this manual.

Default values

When instanciating a model, all fields are initialised to “neutral” values. For
containers (dict, set, list, ...) it is the empty container, for
unicode, it’s the empty string, for numbers, 0...

It is also possible to specify the values taken by the fields when instanciating
either with a __defaults__ dict or directly in __init__. The former applies
to all new instances while the later is obviously on a per instance basis and has
a higher precedence.

__defaults__ is a {u'keyname':default_value}. __init__ syntax follows
the same logic: Model(keyname=default_value, ...).

default_value can either be a scalar value or a callable with no argument
returning a scalar value. The value must be of type matching the schema definition,
otherwise, a TypeError exception is raised.

Example:

from dynamodb_mapper.model import DynamoDBModel, utc_tz
from datetime import datetime

define a model with defaults
class PlayerStrength(DynamoDBModel):
 __table__ = u"player_strength"
 __hash_key__ = u"player_id"
 __schema__ = {
 u"player_id": int,
 u"strength": unicode,
 u"last_update": datetime,
 }
 __defaults__ = {
 u"strength": u'weak', # scalar default value
 u"last_update": lambda: datetime.now(utc_tz), # callable default value
 }

>>> player = PlayerStrength(strength=u"chuck norris") # overload one of the defaults
>>> print player.strength
chuck norris
>>> print player.lastUpdate
2012-12-21 13:37:00.00000

Related exceptions

SchemaError

	
class dynamodb_mapper.model.SchemaError

	SchemaError exception is raised when a schema consistency check fails.
Most of the checks are performed in create_table().

Common consistency failure includes lacks of __table__, __hash_key__,
__schema__ definition or when an autoincrement_int hash_key
is used with a range_key.

ThroughputError

	
class dynamodb_mapper.model.ThroughputError

	Raised when requested throughput can not be allocated by
create_table(). It probably means that either read
or write is below Amazon’s minimum of 5.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Accessing data

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Accessing data

Amazon’s DynamoDB offers 4 data access method. Dynamodb-mapper directly exposes
them. They are documented here from the fastest to the slowest. It is interesting
to note that, because of Amazon’s throughput credit, the slowest is also the most
expensive.

Strong vs eventual consistency

While this is not stricly speaking related the mapper itself, it seems important
to clarify this point as this is a key feature of Amazon’s DynamoDB.

Tables are spreaded among partitions for redundancy and performance purpose. When
writing an item, it takes some time to replicate it on all partitions. Usually
less than a second according to the technical specifications. Accessing an item
right after writing it might get you an outdated version.

In most applications, this will not be an issue. In this case we say that data is
‘eventually consistent’. If this matters, you may request ‘strong consistency’
thus asking for the most up to date version. ‘strong consistency’ is also more
twice as expensive in terms of capacity units as ‘eventual consistency’ and a bit
slower too. So that keeping this aspect in mind is important.

‘Eventual consistency’ is the default behavior in all requests. It also the only
available option for scan and get_batch.

Querying

The 4 DynamoDB query methods are:

	get()

	get_batch()

	query()

	scan()

They all are classmethods returning instance(s) of the model.
To get object(s):

>>> obj = MyModelClass.get(...)

Use get or batch_get to get one or more item by exact id. If you need
more than one item, it is highly recommended to use batch_get instead of
get in a loop as it avoids the cost of multiple network call. However, if
strong consistency is required, get is the only option as DynamoDB does not
support it in batch mode.

When objects are logically grouped using a range_key it is
possible to get all of them in a simple query and fast query provided they all
have the same known hash_key. query() also supports
a couple of handy filters [http://docs.pythonboto.org/en/latest/ref/dynamodb.html#boto.dynamodb.layer2.Layer2.query].

When querying, you pay only for the results you really get this is what makes
filtering interesting. They work both for strings and for numbers. The
BEGINSWITH filter is extremely handy for namespaced range_key. When
using EQ(x) filter, it may be preferable for readability to rewrite it as a
regular get. The cost in terms of read units is strictly speaking the same.

If needed query() support strong consistency,
reversing scan order and limiting the results count.

The last function, scan, is like a generalised version of query. Any field
can be filtered and more filters are available. There is a complete list [http://docs.pythonboto.org/en/latest/ref/dynamodb.html#boto.dynamodb.layer2.Layer2.scan]
on the Boto website. Nonetheless, scan results are always eventually
consistent.

This said, scan is extremely expensive in terms of throughput and its use
should be avoided as much as possible. It may even impact negatively pending
regular requests causing them to repetively fail. Underlying Boto tries to
gracefully handle this but you overall application’s performance and user
experience might suffer a lot. For more informations about scan impact,
please see Amazon’s developer guide [http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/BestPractices.html#ScanQueryConsiderationBestPractices]

Use case: Get user Chuck Norris

This first example is pretty straight-forward.

from dynamodb_mapper.model import DynamoDBModel

Example model
class MyUserModel(DynamoDBModel):
 __table__ = u"..."
 __hash_key__ = u"fullname"
 __schema__ = {
 # This is probably a good key in a real world application because of homonynes
 u"fullname": unicode,
 # [...]
 }

Get the user
myuser = MyUserModel.get("Chuck Norris")

Do some work
print "myuser({})".format(myuser.fullname)

Use case: Get only objects after 2012-12-21 13:37

At the moment, filters only accepts strings and numbers. If you need to filter
dates for time based applications. To workaround this limitation, you need to
export the datetime object to the internal W3CDTF representation.

from datetime import datetime
from dynamodb_mapper.model import DynamoDBModel, utc_tz
from boto.dynamodb.condition import *

Example model
class MyDataModel(DynamoDBModel):
 __table__ = u"..."
 __hash_key__ = u"h_key"
 __range_key__ = u"r_key"
 __schema__ = {
 u"h_key": int,
 u"r_key": datetime,
 # [...]
 }

Build the date condition and export it to W3CDTF representation
date_obj = datetime.datetime(2012, 12, 21, 13, 31, 0, tzinfo=utc_tz),
date_str = date_obj.astimezone(utc_tz).strftime("%Y-%m-%dT%H:%M:%S.%f%z")

Get the results generator
mydata_generator = MyDataModel.query(
 hash_key_value=42,
 range_key_condition=GT(date_str)
)

Do some work
for data in mydata_generator:
 print "data({}, {})".format(data.h_key, data.r_key)

Use case: Query the most up to date revision of a blogpost

There is no builtin filter but this can easily be achieved using a conjunction
of limit and reverse parameters. As query returns a generator,
limit parameter could seem to be of no use. However, internaly DynamoDB sends
results by batches of 1MB and you pay for all the results so... you’d beter use it.

from dynamodb_mapper.model import DynamoDBModel, utc_tz

Example model
class MyBlogPosts(DynamoDBModel):
 __table__ = u"..."
 __hash_key__ = u"post_id"
 __range_key__ = u"revision"
 __schema__ = {
 u"post_id": int,
 u"revision": int,
 u"title": unicode,
 u"tags": set,
 u"content": unicode,
 # [...]
 }

Get the results generator
mypost_last_revision_generator = MyBlogPosts.query(
 hash_key_value=42,
 limit=1,
 reverse=True
)

Get the actual blog post to render
try:
 mypost = mypost_last_revision_generator.next()
except StopIteration:
 mypost = None # Not Found

This example could easily be adapted to get the first revision, the n first
comments. You may also combine it with a condition to get pagination like behavior.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Data manipulation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Data manipulation

Amazon’s DynamoDB offers the ability to both update and insert data with a single
save() method that is mostly exposed by Dynamodb-mapper.

Saving

As Dynamodb-mapper directly exposes items properties as python properties,
manipulating data is as easy as manipulating any Python object. Once done, just
call save() on your model instance.

save() has 2 optional parameters. When manually set to
False, allow_overwrite will only allow the insertion of a new Item.
this is done by setting a condition on the keys.

The second parameter expected_values will garantee that the Item is saved
only if these values are present in the database. This dict is a bit tricky
to use as it needs to be a raw DynamoDB mapping.

	It supports only string and numers.

	When a field is set to False, it will ensure that it does not exist.

Hopefully, DynamodbModel class offers an utility method to ease the mapping
creation. to_db_dict() converts the current Item to a
DynamoDB compatible representation.

Use case: Virtual coins

When a player purchases a virtual good in a game, virtual money is withdrawn from
from its internal account. After the operation, the balance must be > 0. If
multiple orders are being processed at the same time, we must prevent the lost
update scenario:

	initial balance = 200

	purchase P1 150

	purchase P2 100

	read balance P1 -> 200

	read balance P2 -> 200

	update balance P1 -> 50

	update balance P1 -> 100

Indeed, when saving, you expect that the balance has not changed. This is
what expected_values are for.

from dynamodb_mapper.model import DynamoDBModel, autoincrement_int

class NotEnoughCreditException(Exception):
 pass

class User(DynamoDBModel):
 __table__ = u"game-dev-users"
 __hash_key__ = u"login"
 __schema__ = {
 u"e-mail": unicode,
 u"firstname": unicode,
 u"lastname": unicode,
 u"e-mail": unicode,
 u"connexioncount": int,
 #...
 u"balance": int,
 }

user = User.get("waldo")
oldbalance = user.balance
if user.balance - 150 < 0:
 raise NotEnoughCreditException
user.balance -= 150

try:
 user.save(expected_values={"balance": oldbalance})
except ExpectedValueError:
 print "Ooops: Lost update syndrome caught!"

Note: In a real world application, this would most probably be wrapped in
Transactions

Autoincrement technical background

When saving an Item with an autoincrement_int hash_key, the
save() method will automatically add checks to prevent
accidental overwrite of the “magic item”. The magic item holds the last allocated
ID and is saved at hash_key=-1. If hash_key == 0 then a new ID is
automatically and atomically allocated meaning that no collision can occure even
if the database connection is lost. Additionaly, a check is performed to make
sure no Item were manually inserted to this location. If applicable, a maximum
of MAX_RETRIES=100 attempts to allocate a new ID will be performed before
raising MaxRetriesExceededError. In all other cases, the Item will
be saved exactly where requested.

To make it short, Items involving an autoincrement_int hash_key
will involve 2 write request on first save. It is important to keep it in mind
when dimensioning an insert-intensive application.

Know when to use it, when *not* to use it.

Example:

>>> model = MyModel() # model with an autoincrement_int 'id' hash_key
>>> model.do_stuff()
>>> model.save()
>>> print model.id # An id field is automatically generated
7

About editing hash_key and/or range_key values

Dynamodb-mapper let you edit hash_key and/or range_key fields like any
other. However, Amazon’s DynamoDB has no support for changing their values.
If they are edited, a new item will be saved in the table with these keys.
If you indeed meant to change the keys, first delete the item and then save it
again. Beware that any item pre-existing at this keys will be overwritten unless
allow_overwrite=True in save.

Example:

>>> model = MyModel.get(24)
>>> model.delete() # Delete *first*
>>> model.id = 42 # Then change the key(s)
>>> model.save() # Finally, save it

There is no plan to protect the key fields in any future release.

Logically group data manipulations

Some data manipulations requires a whole context to be consistent, status saving
or whatever. If your application requires any of these features, please go to the
transactions section of this guide.

Limitations

Some limitations over Amazon’s DynamoDB currently applies to this mapper.
save() has no support for :

	returning data after a transaction

	atomic increments

Please, let us know if this is a blocker to you!

Related exceptions

OverwriteError

	
class dynamodb_mapper.model.OverwriteError

	Raised when saving a DynamoDBModel instance would overwrite something
in the database and we’ve forbidden that because we believe we’re creating
a new one (see DynamoDBModel.save()).

ExpectedValueError

	
class dynamodb_mapper.model.ExpectedValueError

	Conditional write failure.
Raised when the expected_values argument to DynamoDBModel.save()
doesn’t match what is stored in the database (i.e. when somebody changed
the DB’s version of your object behind your back).

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Transactions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Transactions

The save use case demonstrates the use of
expected_values argument. What it does is actually implement by hand a
transaction. Amazon’s DynamoDB has no “out of the box” transaction engines but
provides this parameter as an elementary block for this purpose.

Transaction concepts

Transactions are a convenient way to logically group database operations while
trying as much as possible to enforce consistency. In Dynamodb-mapper,
transactions are plain DynamoDBModel thus allowing them to persist their
state. Dynamodb-mapper provides 2 grouping level: Targets and sub-transactions.

Transactions operates on a list of ‘targets’. For each target, it needs list of
transactors. transactors are tuples of (getter, setter). The getter
is responsible of getting a fresh copy of the target from the target while setter
performs the modifications. The call to save is handled by the engine itself.

For each target, the transaction engine will successively call getter and
setter until save() succeeds. save() will succeed if and only if
the target has not been altered by another thread in the mean time thus avoiding
the lost update syndrome.

Optionally, transactions may define a method _setup()
which will be called before any transactors.

Sub-transactions, if applicable, are ran after the main transactors if they all
succeeded. Hence, _setup() and the transactors may
dynamically append sub-transactions to the main transactions.

Unless the transaction is explicitely marked transient, its state will be
persisted to a dedicated table. Transaction base class embeds a minimal
schema that should suit most applications but may be overloaded as long as a
datetime range_key is preserved along with a unicode status
field.

Using the transaction engine

To use the transaction engine, all you have to do is to define __table__ and
overload _get_transactors(). Of course the transactors will themselves will
need to be implemented. Optionally, you may overload the whole schema or set
transient=True. A _setup() method may also be implemented.

During the transaction itself, please set requester_id field to any relevant
interger unless the transaction is transient. _setup() is a good place
to do it.

Note: transient flag may be toggled on a per instance basis. It may even be
toggled in one of the transactors.

Use case: Bundle purchase

from dynamodb_mapper.transactions import Transaction, TargetNotFoundError

define PlayerExperience, PlayerPowerUp, PlayerSkins, Players with user_id as hash_key

class InsufficientResourceError(Exception):
 pass

bundle = {
 u"cost": 150,
 u"items": [
 PlayerExperience,
 PlayerPowerUp,
 PlayerSkins
]
}

class BundleTransaction(Transaction):
 transient = False # Make it explicit. This is anyway the default.
 __table__ = u"mygame-dev-bundletransactions"

 def __init__(self, user_id, bundle):
 super(BundleTransaction, self).__init__()
 self.requester_id = user_id
 self.bundle = bundle

 # _setup() is not needed here

 def _get_transactors(self):
 transactors = [(
 lambda: Players.get(self.requester_id), # lambda
 self.user_payment # regular callback
)]

 for Item in self.bundle.items:
 transactors.append((
 lambda: Item.get(self.requester_id),
 lambda item: item.do_stuff()
))

 return transactors

 def user_payment(self, player):
 if player.balance < self.bundle.cost:
 raise InsufficientResourceError()
 player.balance -= self.bundle.cost

Run the transaction
try:
 transaction = BundleTransaction(42, bundle)
 transaction.commit()
except InsufficientResourceError:
 print "Ooops, user {} has not enough coins to proceed...".format(42)

#That's it !

This example has been kept simple on purpose. In a real world application, you
certainly would not model your data this way ! You can notice the power of this
approach that is compatible with lambda niceties as well as regular callbacks.

Use case: PowerUp purchase

This example is a bit more subtle than the previous one. The customer may
purchase a ‘surprise‘ bundle of powerups. The database knows what is in the
pack while the client application does not. As bundles may change from time to
time, we want to log what exactly was purchased. Also, the actual PowerUp
registration should not start until the Coins transaction has succeeded.

To reach this goal, we could

	pre-load the Bundle

	dynamically use the content in get_transactors

	save the detailed status in a specially overloaded Transaction’s __schema__

But that’s more hand work.

A much better way is to split the transaction into PowerupTransaction and
UserPowerupTransaction. The former handles the coins and the registration
of the sub-transaction while the later handles the PowerUo magic.

from dynamodb_mapper.transactions import Transaction, TargetNotFoundError

define PlayerPowerUp, Players with user_id as hash_key

class InsufficientResourceError(Exception):
 pass

Sub-Transaction of PowerupTransaction. Will have i's own status
class UserPowerupTransaction(transaction):
 __table__ = u"mygame-dev-userpoweruptransactions"

 def __init__(self, player, powerup):
 super(UserPowerupTransaction, self).__init__()
 self.requester_id = player.user_id
 self.powerup = powerup

 def _get_transactors(self):
 return [(
 lambda: PlayerPowerUp.get(self.requester_id, self.powerup),
 do_stuff()
)]

Main Transaction class. Will have it's own status
class PowerupTransaction(Transaction):
 __table__ = u"mygame-dev-poweruptransactions"

 cost = 150 # hard-coded cost for the demo
 powerups = ["..."] # hard-coded powerups for the demo

 def _get_transactors(self):
 return [(
 lambda: Players.get(self.requester_id),
 self.user_payment
)]

 def user_payment(self, player):
 # Payment logic
 if player.balance < self.cost:
 raise InsufficientResourceError()
 player.balance -= self.cost

 # Register (overwrite) sub-transactions
 self.subtransactions = []
 for powerupName in self.powerups:
 self.subtransactions.append = (player, powerupName)

Run the transaction
try:
 transaction = PowerupTransaction(requester_id=42)
 transaction.commit()
except InsufficientResourceError:
 print "Ooops, user {} has not enough coins to proceed...".format(42)

#That's it !

Note: In some special “real-World(tm)” situations, it may be necessary to modify
the behavior of subtransactions. It is possible to overload the method
Transaction._apply_subtransactions() for this purpose. Use case:
sub-transactions have been automatically/randomly generated by the main transaction
and the application needs to know wich one were generated or perform some other
application specific tasks when applying.

Related exceptions

MaxRetriesExceededError

	
class dynamodb_mapper.model.MaxRetriesExceededError

	Raised when a failed operation couldn’t be completed after retrying
MAX_RETRIES times (e.g. saving an autoincrementing hash_key).

Note: MAX_RETRIES is currently hardcoded to 100 in transactions module.

TargetNotFoundError

	
class dynamodb_mapper.transactions.TargetNotFoundError

	Raised when attempting to commit a transaction on a target that
doesn’t exist.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Change log - Migration guide.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Change log - Migration guide.

DynamoDBMapper 1.6.2

This section documents all user visible changes included between DynamoDBMapper
versions 1.5.0 and versions 1.6.0

Additions

	transactions may generate a list of sub-transactions to run after the main one

	log all successful queries

	add parameter limit on query method defaulting to None

	extensive documentation

Upgrade

	sub-transactions

	If __init__() is called in any of your transactions, make sure to call
super(MyTransactionClass, self).__init__(**kwargs)

Known bugs - limitations

	#7 Can’t save models where a datetime field is nested in a dict/list.

	Can’t use datetime objects in scan and query filters.

	DynamoDBModel.from_dict() does not check types as opposed to __init__()

DynamoDBMapper 1.6.1

This section documents all user visible changes included between DynamoDBMapper
version 1.6.0 and version 1.6.1

Changes

	fixed bug in scan

DynamoDBMapper 1.6.0

This section documents all user visible changes included between DynamoDBMapper
versions 1.5.0 and versions 1.6.0

Additions

	support for default values in a __defaults__ dict

	specify instances members via global __init__ **kwargs

	autogenerated API documentation

Changes

	transactions engine rewrite to support multiple targets

	transactions always persisted after first write attempt

	transactions engine now embeds its own minimal schema

	transactions can be set transient on a ‘per instance basis’ instead of class

	autoinc hash key now relies on atomic add to prevent risks of races

	autoinc magic element moved to -1 instead of 0 to prevent accidental overwrite

	autoinc magic element now hidden from scan results

	factorized default value code

	enforce batch size 100 limit

	full inline documentation

	fixed issue: All transactions fail if they have a bool field set to False

	99% test coverage

Removal

(None)

Upgrade

	autoinc

	For all tables relying on autoinc feature, manually move element
at 'hash_key' = 0 to 'hash_key' = -1.

	transactions

	Should be retro-compatible but you are strongly advised to adopt the
new API.
- specify targets and setters via Transactions._get_transactors
- avoid any use of Transactions._get_target and Transactions._alter_target
- save is now called automatically as long as at least 1 write was attempted
- __schema__ might not be required anymore due to Transaction having a new one
- requester_id hash key must be set by the user
See these method’s documentation for more informations

Known bugs

(None)

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Connection class

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Connection class

Class definition

	
class dynamodb_mapper.model.ConnectionBorg

	Borg that handles access to DynamoDB.

You should never make any explicit/direct boto.dynamodb calls by yourself
except for table maintenance operations :

	boto.dynamodb.table.update_throughput()

	boto.dynamodb.table.delete()

Remember to call set_credentials(), or to set the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables
before making any calls.

Initialisation

	
ConnectionBorg.set_credentials(aws_access_key_id, aws_secret_access_key)

	Set the DynamoDB credentials. If boto is already configured on this
machine, this step is optional.
Access keys can be found in Amazon’s console. [https://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key]

	Parameters:	
	aws_access_key_id – AWS api access key ID

	aws_secret_access_key – AWS api access key

Create a table

	
ConnectionBorg.create_table(cls, read_units, write_units, wait_for_active=False)

	Create a table that’ll be used to store instances of cls.

See Amazon’s developer guide [http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html]
for more information about provisioned throughput.

	Parameters:	
	cls – The class whose instances will be stored in the table.

	read_units – The number of read units to provision for this table
(minimum 5)

	write_units – The number of write units to provision for this
table (minimum 5).

	wait_for_active – If True, create_table will wait for the table
to become ACTIVE before returning (otherwise, it’ll be CREATING).
Note that this can take up to a minute.
Defaults to False.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Model class

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Model class

Class definition

	
class dynamodb_mapper.model.DynamoDBModel(**kwargs)

	Abstract base class for all models that use DynamoDB as their storage
backend.

Each subclass must define the following attributes:

	__table__: the name of the table used for storage.

	__hash_key__: the name of the primary hash key.

	
	__range_key__: (optional) if you’re using a composite primary key,

	the name of the range key.

	
	__schema__: {attribute_name: attribute_type} mapping.

	Supported attribute_types are: int, long, float, str, unicode, set.
Default values are obtained by calling the type with no args
(so 0 for numbers, “” for strings and empty sets).

	
	__defaults__: (optional) {attribute_name: defaulter} mapping.

	This dict allows to provide a default value for each attribute_name at
object creation time. It will never be used when loading from the DB.
It is fully optional. If no value is supplied the empty value
corresponding to the type will be used.
“defaulter” may either be a scalar value or a callable with no
arguments.

To redefine serialization/deserialization semantics (e.g. to have more
complex schemas, like auto-serialized JSON data structures), override the
from_dict (deserialization) and to_db_dict (serialization) methods.

Important implementation note regarding sets: DynamoDB can’t store empty
sets/strings. Therefore, since we have schema information available to us,
we’re storing empty sets/strings as missing attributes in DynamoDB, and
converting back and forth based on the schema.

So if your schema looks like the following:

{
 "id": unicode,
 "name": str,
 "cheats": set
}

then:

{
 "id": "e1m1",
 "name": "Hangar",
 "cheats": set([
 "idkfa",
 "iddqd"
])
}

will be stored exactly as is, but:

{
 "id": "e1m2",
 "name": "",
 "cheats": set()
}

will be stored as simply:

{
 "id": "e1m2"
}

Constructors

__init__

	
DynamoDBModel.__init__(**kwargs)

	Create an instance of the model. All fields defined in the schema
are created. By order of prioritym its value will be loaded from:

	kwargs

	__defaults__

	mapper’s default (0, empty string, empty set, ...)

We’re supplying this method to avoid the need for extra checks in save and
ease object initial creation.

from_dict

	
classmethod DynamoDBModel.from_dict(d)

	Build an instance from a dict-like mapping,
according to the class’s schema.

Default values are used for anything that’s missing from the dict
(see DynamoDBModel class docstring).

Data access

get

	
classmethod DynamoDBModel.get(hash_key_value, range_key_value=None, consistent_read=False)

	Retrieve a single object from DynamoDB according to its primary key.

Note that this is not a query method – it will only return the object
matching the exact primary key provided. Meaning that if the table is
using a composite primary key, you need to specify both the hash and
range key values.

	Parameters:	
	hash_key_value – The value of the requested item’s hash_key.

	range_key_value – The value of the requested item’s range_key,
if the table has a composite key.

	consistent_read – If False (default), an eventually consistent
read is performed. Set to True for strongly consistent reads.

get_batch

	
classmethod DynamoDBModel.get_batch(keys)

	Retrieve multiple objects according to their primary keys.

Like get, this isn’t a query method – you need to provide the exact
primary key(s) for each object you want to retrieve:

	If the primary keys are hash keys, keys must be a list of
their values (e.g. [1, 2, 3, 4]).

	If the primary keys are composite (hash + range), keys must
be a list of (hash_key, range_key) values
(e.g. [("user1", 1), ("user1", 2), ("user1", 3)]).

get_batch always performs eventually consistent reads.

Please not that a batch can not read more than 100 items at once.

	Parameters:	keys – iterable of keys. ex [(hash1, range1), (hash2, range2)]

query

	
classmethod DynamoDBModel.query(hash_key_value, range_key_condition=None, consistent_read=False, reverse=False, limit=None)

	Query DynamoDB for items matching the requested key criteria.

You need to supply an exact hash key value, and optionally, conditions
on the range key. If no such conditions are supplied, all items matching
the hash key value will be returned.

This method can only be used on tables with composite (hash + range)
primary keys – since the exact hash key value is mandatory, on tables
with hash-only primary keys, cls.get(k) does the same thing cls.query(k)
would.

	Parameters:	
	hash_key_value – The hash key’s value for all requested items.

	range_key_condition – A condition instance from
boto.dynamodb.condition – one of

	EQ(x)

	LE(x)

	LT(x)

	GE(x)

	GT(x)

	BEGINS_WITH(x)

	BETWEEN(x, y)

	consistent_read – If False (default), an eventually consistent
read is performed. Set to True for strongly consistent reads.

	reverse – Ask DynamoDB to scan the range_key in the reverse
order. For example, if you use dates here, the more recent element
will be returned first. Defaults to False.

	limit – Specify the maximum number of items to read from the table.
Even though Boto returns a generator, it works by batchs of 1MB.
using this option may help to spare some read credits. Defaults to
None

	Return type:	generator

scan

	
classmethod DynamoDBModel.scan(scan_filter=None)

	Scan DynamoDB for items matching the requested criteria.

You can scan based on any attribute and any criteria (including multiple
criteria on multiple attributes), not just the primary keys.

Scan is a very expensive operation – it doesn’t use any indexes and will
look through the entire table. As much as possible, you should avoid it.

	Parameters:	scan_filter – A {attribute_name: condition} dict, where
condition is a condition instance from boto.dynamodb.condition.

	Return type:	generator

save

	
DynamoDBModel.save(allow_overwrite=True, expected_values=None)

	Save the object to the database.

This method may be used both to insert a new object in the DB, or to
update an existing one (iff allow_overwrite == True).

	Parameters:	
	allow_overwrite – If False, the method will only succeed if this
object’s primary keys don’t exist in the database (otherwise,
OverwriteError is raised).

	expected_values – dict of expected attribute values – if any
one of these values doesn’t match what is in the database
(i.e. someone went ahead and modified the object in the DB behind
your back), the operation fails and raises
ExpectedValueError.

delete

	
DynamoDBModel.delete()

	Delete the current object from the database.

Data export

to_json_dict

	
DynamoDBModel.to_json_dict()

	Return a dict representation of the object, suitable for JSON
serialization.

This means the values must all be valid JSON object types
(in particular, sets must be converted to lists), but types not
suitable for DynamoDB (e.g. nested data structures) may be used.

Note that this method is never used for interaction with the database
(to_db_dict() is).

to_db_dict

	
DynamoDBModel.to_db_dict()

	Return a dict representation of the object according to the class’s
schema, suitable for direct storage in DynamoDB.

Auto-increment

	
class dynamodb_mapper.model.autoincrement_int

	Dummy int subclass for use in your schemas.

If you’re using this class as the type for your key in a hash_key-only
table, new objects in your table will have an auto-incrementing primary
key.

Note that you can still insert items with explicit values for your primary
key – the autoincrementing scheme is only used for objects with unset
hash_keys (or to be more precise, left set to the default value of 0).

Auto-incrementing int keys are implemented by storing a special “magic”
item in the table with the following properties:

	hash_key_value = -1

	__max_hash_key__ = N

where N is the maximum used hash_key value.

Inserting a new item issues an atomic add on the ‘__max_hash_key__’ value.
Its new value is returned and used as the primary key for the new elem.

Note that hash_key_value is set to ‘-1’ while __max_hash_key__ initial
value is 0. This will element at key ‘0’ unused. It’s actually a garbage item
for cases where a value is manually added to an unitialized index.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Transactions class

 Navigation

 	
 index

 	
 previous |

 	dynamodb-mapper 1.6.2 documentation

Transactions class

Class definition

	
class dynamodb_mapper.transactions.Transaction(**kwargs)

	Abstract base class for transactions. A transaction may involve multiple
targets and needs to be fully successful to be marked as “DONE”.

This class gracefully handles concurrent modifications and auto-retries but
embeds no tool to rollback.

Transactions may register subtransactions. This field is a list of
Transaction. Sub-transactions are played after the main transactors

Transactions status may be persisted for tracability, further analysis...
for this purpose, a minimal schema is embedded in this base class. When
deriving, you MUST keep

	datetime field as rangekey

	status field

The hash key field may be changed to pick a ore relevant name or change its
type. In any case, you are responsible of setting its value. For example, if
collecting rewards for a player, you may wish to keep track of related
transactions by user_id hence set requester_id to user_id

Deriving class MUST set field __table__ and requester_id field

Public API

commit

	
Transaction.commit()

	Run the transaction and, if needed, store its states to the database

	set up preconditions and parameters (_setup() – only called
once no matter what).

	fetch all transaction steps (_get_transactors()).

	for each transaction :

	fetch the target object from the DB.

	modify the target object according to the transaction’s parameters.

	save the (modified) target to the DB

	run sub-transactions (if any)

	save the transaction to the DB

Each transation may be retried up to MAX_RETRIES times automatically.
commit uses conditional writes to avoid overwriting data in the case of
concurrent transactions on the same target (see _retry()).

save

	
Transaction.save(allow_overwrite=True, expected_values=None)

	If the transaction is transient (transient = True),
do nothing.

If the transaction is persistent (transient = False), save it to
the DB, as DynamoDBModel.save().

Note: this method is called automatically from commit. You may but do
not need to call it explicitly.

Transactions interface

_setup

	
Transaction._setup()

	Set up preconditions and parameters for the transaction.

This method is only run once, regardless of how many retries happen.
You should override it to fetch all the unchanging information you
need from the database to run the transaction (e.g. the cost of a Bingo
card, or the contents of a reward).

_get_transactors

	
Transaction._get_transactors()

	Fetch a list of targets (getter, setter) tuples. The transaction
engine will walk the list. For each tuple, the getter and the setter are
called successively until this step of the transaction succeed or exhaust
the MAX_RETRIES.

	
	getter: Fetch the object on which this transaction is supposed to operate

	(e.g. a User instance for UserResourceTransactions) from the DB and
return it.
It is important that this method actually connect to the database and
retrieve a clean, up-to-date version of the object – because it will
be called repeatedly if conditional updates fail due to the target
object having changed.
The getter takes no argument and returns a DBModel instance

	
	setter: Applyies the transaction to the target, modifying it in-place.

	Does not attempt to save the target or the transaction to the DB.
The setter takes a DBModel instance as argument. Its return value is
ignored

The list is walked from 0 to len(transactors)-1. Depending on your application,
Order may matter.

	Raises TargetNotFoundError:

		If the target doesn’t exist in the DB.

_apply_subtransactions

	
Transaction._apply_subtransactions()

	Run sub-transactions if applicable. This is called after the main
transactors.

This code has been moved to its own method to ease overloading in
real-world applications without re-implementing the whole commit
logic.

This method should not be called directly. It may only be overloaded
to handle special behaviors like callbacks.

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 Index

 Navigation

 	
 index

 	dynamodb-mapper 1.6.2 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | M
 | O
 | Q
 | S
 | T

_

 	

 	__init__() (dynamodb_mapper.model.DynamoDBModel method)

 	_apply_subtransactions() (dynamodb_mapper.transactions.Transaction method)

 	

 	_get_transactors() (dynamodb_mapper.transactions.Transaction method)

 	_setup() (dynamodb_mapper.transactions.Transaction method)

A

 	

 	autoincrement_int (class in dynamodb_mapper.model)

C

 	

 	commit() (dynamodb_mapper.transactions.Transaction method)

 	ConnectionBorg (class in dynamodb_mapper.model)

 	

 	create_table() (dynamodb_mapper.model.ConnectionBorg method)

D

 	

 	delete() (dynamodb_mapper.model.DynamoDBModel method)

 	

 	DynamoDBModel (class in dynamodb_mapper.model)

E

 	

 	ExpectedValueError (class in dynamodb_mapper.model)

F

 	

 	from_dict() (dynamodb_mapper.model.DynamoDBModel class method)

G

 	

 	get() (dynamodb_mapper.model.DynamoDBModel class method)

 	

 	get_batch() (dynamodb_mapper.model.DynamoDBModel class method)

M

 	

 	MaxRetriesExceededError (class in dynamodb_mapper.model)

O

 	

 	OverwriteError (class in dynamodb_mapper.model)

Q

 	

 	query() (dynamodb_mapper.model.DynamoDBModel class method)

S

 	

 	save() (dynamodb_mapper.model.DynamoDBModel method)

 	

 	(dynamodb_mapper.transactions.Transaction method)

 	scan() (dynamodb_mapper.model.DynamoDBModel class method)

 	

 	SchemaError (class in dynamodb_mapper.model)

 	set_credentials() (dynamodb_mapper.model.ConnectionBorg method)

T

 	

 	TargetNotFoundError (class in dynamodb_mapper.transactions)

 	ThroughputError (class in dynamodb_mapper.model)

 	to_db_dict() (dynamodb_mapper.model.DynamoDBModel method)

 	

 	to_json_dict() (dynamodb_mapper.model.DynamoDBModel method)

 	Transaction (class in dynamodb_mapper.transactions)

 Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	1.6.2

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		dynamodb-mapper 1.6.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Ludia Inc..
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

 		1.6.2

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

